Coaxially gated in-wire thin-film transistors made by template assembly.
نویسندگان
چکیده
Nanowire field effect transistors were prepared by a wet chemical template replication method using anodic aluminum oxide membranes. The membrane pores were first lined with a thin SiO2 layer by the surface sol-gel method. Au, CdS (or CdSe), and Au wire segments were then sequentially electrodeposited within the pores, and the resulting nanowires were released by dissolution of the membrane. Electrofluidic alignment of these nanowires between source and drain leads and evaporation of gold over the central CdS (CdSe) stripe affords a "wrap-around gate" structure. At VDS = -2 V, the Au/CdS/Au devices had an ON/OFF current ratio of 103, a threshold voltage of 2.4 V, and a subthreshold slope of 2.2 V/decade. A 3-fold decrease in the subthreshold slope relative to that of planar nanocrystalline CdSe devices can be attributed to coaxial gating. The control of dimensions afforded by template synthesis should make it possible to reduce the gate dielectric thickness, channel length, and diameter of the semiconductor segment to sublithographic dimensions while retaining the simplicity of the wet chemical synthetic method.
منابع مشابه
Organic Thin Film Transistors with Polyvinylpyrrolidone / Nickel Oxide Sol-Gel Derived Nanocomposite Insulator
Polyvinylpyrrolidone / Nickel oxide (PVP/NiO) dielectrics were fabricated with sol-gel method using 0.2 g of PVP at different working temperatures of 80, 150 and 200 ºC. Structural properties and surface morphology of the hybrid films were investigated by X- Ray diffraction (XRD) and Scanning Electron Microscope (SEM) respectively. Energy dispersive X-ray spec...
متن کاملProcess Optimization of Deposition Conditions for Low Temperature Thin Film Insulators used in Thin Film Transistors Displays
Deposition process for thin insulator used in polysilicon gate dielectric of thin film transistors are optimized. Silane and N2O plasma are used to form SiO2 layers at temperatures below 150 ºC. The deposition conditions as well as system operating parameters such as pressure, temperature, gas flow ratios, total flow rate and plasma power are also studied and their effects are discussed. The p...
متن کاملBallistic (n,0) Carbon Nanotube Field Effect Transistors' I-V Characteristics: A Comparison of n=3a+1 and n=3a+2
Due to emergence of serious obstacles by scaling of the transistors dimensions, it has been obviously proved that silicon technology should be replaced by a new one having a high ability to overcome the barriers of scaling to nanometer regime. Among various candidates, carbon nanotube (CNT) field effect transistors are introduced as the most promising devices for substituting the silicon-based ...
متن کاملLow temperature amorphous and nanocrystalline silicon thin film transistors deposited by Hot-Wire CVD on glass substrate
Amorphous and nanocrystalline silicon films obtained by Hot-Wire Chemical Vapor deposition have been incorporated as active layers in n-type coplanar top gate thin film transistors deposited on glass substrates covered with SiO2. Amorphous silicon devices exhibited mobility values of 1.3 cmVs, which are very high taking into account the amorphous nature of the material. Nanocrystalline transist...
متن کاملNoise Characteristics of MoS2 Thin-Film Transistors: Comparison of Single and Multilayer Structures
We report on the transport and low-frequency noise measurements of MoS2 thin-film transistors (TFTs) with thin (2–3 atomic layers) and thick (15–18 atomic layers) channels. The back-gated transistors made with the relatively thick MoS2 channels have advantages of the higher electron mobility and lower noise level. The normalized noise spectral density of the low-frequency 1/ f noise in thick Mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 126 40 شماره
صفحات -
تاریخ انتشار 2004